Efforts to assess the ecological impacts of the marked increase in coastal hypoxia worldwide have been hampered by a lack of biomarkers of hypoxia exposure in marine benthic organisms. Here, we show that hypoxia-inducible factor-1α (HIF-1α) transcript levels in the heart and cerebral ganglion of mantis shrimp (Oratosquilla oratoria) collected from hypoxic sites in Tokyo Bay are elevated several-fold over those in shrimp collected from normoxic sites. Upregulation of HIF-1α mRNA levels in the heart after exposure to sub-lethal hypoxia was confirmed in controlled laboratory experiments. HIF-1α transcript levels were increased at approximately threefold after 7 and 14 days of hypoxia exposure and declined to control levels within 24 h of restoration to normoxic conditions. The results provide the first evidence for upregulation of HIF-1α transcript levels in two hypoxia-sensitive organs, heart and cerebral ganglion, in a marine invertebrate exposed to environmental hypoxia. These results suggest that upregulation of HIF-1α transcript levels is an important component in adaptation of mantis shrimp to chronic hypoxia and is a potentially useful biomarker of environmental hypoxia exposure..
DATA/REPORT DETAILS
Assessment of hypoxia-inducible factor-1α mRNA expression in mantis shrimp as a biomarker of environmental hypoxia exposure
- Published on:
- Science Area(s): Biological Effects of Contaminants and Nutrients, Hypoxia, Stressor Impacts and Mitigation
- Region(s) of Study: Gulf of Mexico, Louisiana, Texas, U.S. States and Territories, Waterbodies
- Primary Contact(s): david.kidwell@noaa.gov
Citation:
Kodama, K., Md.S. Rahman, T. Horiguchi, and P. Thomas
Kodama, K., Md.S. Rahman, T. Horiguchi, and P. Thomas
Data/Report Type:
Sponsored Research
Sponsored Research
Related Project(s):
Description
Note to readers with disabilities: Some scientific publications linked from this website may not conform to Section 508 accessibility standards due to the complexity of the information being presented. If you need assistance accessing this electronic content, please contact the lead/corresponding author, Primary Contact, or nccos.webcontent@noaa.gov.