Home > Explore Data & Reports > Effects of the Changjiang (Yangtze) River discharge on planktonic community respiration in the East China Sea


Chen, C.-C., F.-K. Shiah, K.-P. Chiang, G.-C. Gong, and W.M. Kemp. 2009. Effects of the Changjiang (Yangtze) River discharge on planktonic community respiration in the East China Sea. Journal of Geophysical Research, 114:1-15. https://doi.org/10.1029/2008JC004891

Data/Report Type:

Sponsored Research


Planktonic communities tend to flourish on the western margins of the East China Sea (ECS) fueled by substrates delivered largely from the Changjiang River, the fifth largest river in the world. To study the effects of the Changjiang River discharge on planktonic community respiration (CR), physical?chemical variables and key processes were measured in three consecutive summers in the ECS. Results showed that concentrations of nitrate and Chl a, protozoan biomass, bacterial production, as well as CR in the surface water were all negatively correlated with sea surface salinity, reflecting the strong influence of river discharge on the ECS shelf ecosystem. Moreover, mean values of nitrate, Chl a concentrations, and CR rates were proportionally related to the area of Changjiang diluted water (CDW; salinity ?31.0 practical salinity units (psu)), an index of river discharge rate. Presumably, higher river flow delivers higher nutrient concentrations which stimulate phytoplankton growth, which in turn fuels CR. CR exhibited significant monthly and interannual variability, and rates appear to be dominated by bacteria and phytoplankton. Although the plankton community was relatively productive (mean = 0.8 mg C m?2 d?1) in the CDW, the mean ratio of production to respiration was low (0.42). This suggests that the heterotrophic processes regulating CR were supported by riverine organic carbon input in addition to in situ autotrophic production.

Note to readers with disabilities: Some scientific publications linked from this website may not conform to Section 508 accessibility standards due to the complexity of the information being presented. If you need assistance accessing this electronic content, please contact the lead/corresponding author, Primary Contact, or nccos.webcontent@noaa.gov.

Explore Similar Data/Reports


NCCOS delivers ecosystem science solutions for stewardship of the nation’s ocean and coastal resources to sustain thriving coastal communities and economies.

Stay Connected

Sign up for our quarterly newsletter or view our archives.

Follow us on Social

Listen to our Podcast

Check our our new podcast "Coastal Conversations"