Home > Explore Data & Reports > Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish


Murray, C.M., A, Malvezzi, C.J. Gobler, and H. Baumann. 2014. Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Marine Ecology Progress Series, 504:43111. https://doi.org/10.3354/meps10791

Data/Report Type:

Sponsored Research


Experimental assessments of species vulnerabilities to ocean acidification are rapidly increasing in number, yet the potential for short- and long-term adaptation to high CO2 by contemporary marine organisms remains poorly understood. We used a novel experimental approach that combined bi-weekly sampling of a wild, spawning fish population (Atlantic silverside Menidia menidia) with standardized offspring CO2 exposure experiments and parallel pH monitoring of a coastal ecosystem. We assessed whether offspring produced at different times of the spawning season (April to July) would be similarly susceptible to elevated (~1100 ?atm, pHNIST = 7.77) and high CO2 levels (~2300 ?atm, pHNIST = 7.47). Early in the season (April), high CO2 levels significantly (p < 0.05) reduced fish survival by 54% (2012) and 33% (2013) and reduced 1 to 10 d post-hatch growth by 17% relative to ambient conditions. However, offspring from parents collected later in the season became increasingly CO2-tolerant until, by mid-May, offspring survival was equally high at all CO2 levels. This interannually consistent plasticity coincided with the rapid annual pH decline in the species’ spawning habitat (mean pH: 1 April/31 May = 8.05/7.67). It suggests that parents can condition their offspring to seasonally acidifying environments, either via changes in maternal provisioning and/or epi genetic transgenerational plasticity (TGP). TGP to increasing CO2 has been shown in the laboratory but never before in a wild population. Our novel findings of direct CO2-related survival reductions in wild fish offspring and seasonally plastic responses imply that realistic assessments of species CO2-sensitivities must control for parental environments that are seasonally variable in coastal habitats.

Note to readers with disabilities: Some scientific publications linked from this website may not conform to Section 508 accessibility standards due to the complexity of the information being presented. If you need assistance accessing this electronic content, please contact the lead/corresponding author, Primary Contact, or nccos.webcontent@noaa.gov.

Explore Similar Data/Reports


NCCOS delivers ecosystem science solutions for stewardship of the nation’s ocean and coastal resources to sustain thriving coastal communities and economies.

Stay Connected

Sign up for our quarterly newsletter or view our archives.

Follow us on Social

Listen to our Podcast

Check our our new podcast "Coastal Conversations"