Home > Explore Data & Reports > Vulnerability of early life stage Northwest Atlantic forage fish to ocean acidification and low oxygen

Citation:

Depasquale, E.L., H. Baumann, and C.J. Gobler. 2015. Vulnerability of early life stage Northwest Atlantic forage fish to ocean acidification and low oxygen. Marine Ecology Progress Series, 523:145-156. https://doi.org/10.3354/meps11142

Data/Report Type:

Sponsored Research

Description

Global oceans are undergoing acidification and deoxygenation, yet the concurrent effects of low oxygen and acidification on marine fish are unknown. This study quantified the separate and combined effects of low pH and low oxygen on 4 vital early life-history traits (time-to-hatch, hatching success, post-hatch survival, and growth) of 3 ecologically important estuarine fish species (Menidia beryllina, Menidia menidia, and Cyprinodon variegatus). Offspring were exposed from the egg through the early larval stages to ideal (pHT [pH total scale] = 7.9, DO [dissolved oxygen] = 9.0 mg l-1), hypoxic (DO = 1.6-2.5 mg l-1), acidified (pHT = 7.4), and hypoxic + acidified (pHT = 7.4, DO = 1.6-2.5 mg l-1) conditions. Hypoxia alone significantly delayed hatching of embryos by 1 to 3 d and reduced hatching success of all 3 species by 24 to 80%. Acidification alone significantly depressed the survival of M. beryllina. Acidification and hypoxia had an additive negative effect on survival of M. beryllina, a seasonal, synergistic negative effect on survival of M. menidia, and no effect on survival of C. variegatus. Acidification and hypoxia had an additive negative effect on length of larval M. beryllina, while hypoxia alone significantly reduced length of M. menidia and C. variegatus from 15 to 45%. Our findings suggest a greater sensitivity of early life estuarine fish to low oxygen compared to low pH conditions, while also demonstrating that the co-occurrence of both stressors can yield both additive and synergistic negative effects on survival and other fitness-related traits. The reduced fitness of forage fish when experiencing acidification and hypoxia may limit the productivity of higher trophic organisms that depend on them as prey.

Note to readers with disabilities: Some scientific publications linked from this website may not conform to Section 508 accessibility standards due to the complexity of the information being presented. If you need assistance accessing this electronic content, please contact the lead/corresponding author, Primary Contact, or nccos.webcontent@noaa.gov.

Explore Similar Data/Reports

About NCCOS

NCCOS delivers ecosystem science solutions for stewardship of the nation’s ocean and coastal resources to sustain thriving coastal communities and economies.

Stay Connected

Sign up for our quarterly newsletter or view our archives.

Follow us on Social

Listen to our Podcast

Check our our new podcast "Coastal Conversations"