This paper provides a summary of the state of knowledge regarding behavioral impacts of domoic acid exposure on fish. Initial studies by authors of this paper suggested that fish are behaviorally impacted by domoic acid in the same way that birds and mammals are impacted during toxic Pseudo-nitzschia blooms. However, subsequent research and field observations have contradicted that hypothesis and provide evidence that fish are more tolerant to domoic acid under ecologically relevant exposure conditions than their piscivorous predators. This is an important distinction as more attention has been drawn to domoic acid producing algal blooms and the potential for domoic acid to cause fish kills. Currently available data indicate that domoic acid producing algal blooms do not cause fish kills or neuroexcitotoxic behaviors in fish. Neuroexcitatory behavioral effects have been documented in fish in laboratory studies when fish were intraceolomically (IC) injected with domoic acid. In fact, with IC injection as the mode of exposure all fish, bird, and mammal species tested to date show a similar neurologic sensitivity to domoic acid in terms of behavioral excitotoxicity as quantified by a 50% effective concentration (EC50) metric. However, IC injection is not an ecologically relevant mode of exposure. Dietary consumption during toxic blooms is the route of exposure for fish. Results from oral exposure experiments and observations from multiple highly toxic bloom events have provided strong evidence that fish are not behaviorally affected by domoic acid during natural bloom conditions, even though fish regularly contain high levels of the toxin and act as vectors to seabirds and marine mammals. Collectively, the data presented in this review suggest that fish are not significantly impacted by domoic acid during typical toxigenic Pseudo-nitzschia blooms.
DATA/REPORT DETAILS
Domoic acid and fish behavior: A review
- Published on:
- Science Area(s): Biological Effects of Contaminants and Nutrients, Harmful Algal Bloom Detection and Forecasting, Stressor Impacts and Mitigation
- Region(s) of Study: U.S. States and Territories, Washington
- Primary Contact(s): quay.dortch@noaa.gov
Citation:
Lefebvre, K.A., E.R. Frame, and P.S. Kendrick
Lefebvre, K.A., E.R. Frame, and P.S. Kendrick
Data/Report Type:
Sponsored Research
Sponsored Research
Description
Note to readers with disabilities: Some scientific publications linked from this website may not conform to Section 508 accessibility standards due to the complexity of the information being presented. If you need assistance accessing this electronic content, please contact the lead/corresponding author, Primary Contact, or nccos.webcontent@noaa.gov.