The identification of a new suite of toxins, called azaspiracids (AZA), as the cause of human illnesses after the consumption of shellfish from the Irish west coast in 1995, resulted in interest in understanding the global distribution of these toxins and of species of the small dinoflagellate genus Azadinium, known to produce them. Clonal isolates of four species of Azadinium, A. poporum, A. cuneatum, A. obesum and A. dalianense were obtained from incubated sediment samples collected from Puget Sound, Washington State in 2016. These Azadinium species were identified using morphological characteristics confirmed by molecular phylogeny. Whereas AZA could not be detected in any strains of A. obesum, A. cuneatum and A. dalianense, all four strains of A. poporum produced a new azaspiracid toxin, based on LC–MS analysis, named AZA-59. The presence of AZA-59 was confirmed at low levels in situ using a solid phase resin deployed at several stations along the coastlines of Puget Sound. Using a combination of molecular methods for species detection and solid phase resin deployment to target shellfish monitoring of toxin at high-risk sites, the risk of azaspiracid shellfish poisoning can be minimized.